866 research outputs found

    11-interval PFG pulse sequence for improved measurement of fast velocities of fluids with high diffusivity in systems with short T2(∗).

    Get PDF
    Magnetic resonance (MR) was used to measure SF6 gas velocities in beds filled with particles of 1.1 mm and 0.5 mm in diameter. Four pulse sequences were tested: a traditional spin echo pulse sequence, the 9-interval and 13-interval pulse sequence of Cotts et al. (1989) and a newly developed 11-interval pulse sequence. All pulse sequences measured gas velocity accurately in the region above the particles at the highest velocities that could be achieved (up to 0.1 ms(-1)). The spin echo pulse sequence was unable to measure gas velocity accurately in the bed of particles, due to effects of background gradients, diffusivity and acceleration in flow around particles. The 9- and 13-interval pulse sequence measured gas velocity accurately at low flow rates through the particles (expected velocity <0.06 ms(-1)), but could not measure velocity accurately at higher flow rates. The newly developed 11-interval pulse sequence was more accurate than the 9- and 13-interval pulse sequences at higher flow rates, but for velocities in excess of 0.1 ms(-1) the measured velocity was lower than the expected velocity. The increased accuracy arose from the smaller echo time that the new pulse sequence enabled, reducing selective attenuation of signal from faster moving nuclei.CMB acknowledges the Gates Cambridge Trust for funding his research.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.jmr.2016.01.02

    Cu-Ni-PGE mineralisation at the Aurora Project and potential for a new PGE province in the Northern Bushveld Main Zone

    Get PDF
    This is the final version of the article. Available from Elsevier via the DOI in this record.he Aurora Project is a Cu-Ni-PGE magmatic sulphide deposit in the northern limb of the Bushveld Complex of South Africa. Since 1992 mining in the northern limb has focussed on the Platreef deposit, located along the margin of the complex. Aurora has previously been suggested to represent a far-northern facies of the Platreef located along the basal margin of the complex and this study provides new data with which to test this assertion. In contrast to the Platreef, the base metal sulphide mineralisation at Aurora is both Cu-rich (Ni/Cu 50,000) reflecting the preferential removal of Pd over Cu in the sulphides below. Similarly high Cu/Pd ratios characterise the Upper Main Zone in the northern limb above the pigeonite + orthopyroxene interval and suggest that Aurora-style sulphide mineralisation may be developed here as well. The same mineralogy and geochemical features also appear to be present in the T Zone of the Waterberg PGE deposit, located under younger cover rocks to the north of Aurora. If these links are proved they indicate the potential for a previously unsuspected zone of Cu-Ni-PGE mineralisation extending for over 40 km along strike through the Upper Main Zone of the northern Bushveld.Sulphur isotope analyses were carried out by Alison MacDonald at the Scottish Universities Environmental Research Centre as part of NERC Isotope Geoscience Facilities Committee award IP/909/0506. HSRH is sponsored by the Claude Leon Foundation

    Sulphide sinking in magma conduits: Evidence from mafic–ultramafic plugs on Rum and the wider North Atlantic Igneous Province

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Ni–Cu–PGE (platinum group element) sulphide mineralization is commonly found in magmatic conduit systems. In many cases the trigger for formation of an immiscible sulphide liquid involves assimilation of S-bearing crustal rocks. Conceptually, the fluid dynamics of sulphide liquid droplets within such conduits is essentially a balance between gravitational sinking and upwards entrainment. Thus, crustal contamination signatures may be present in sulphides preserved both up- and down-flow from the point of interaction with the contaminant. We examine a suite of ultramafic volcanic plugs on the Isle of Rum, Scotland, to decipher controls on sulphide accumulation in near-surface magma conduits intruded into a variable sedimentary stratigraphy. The whole-rock compositions of the plugs broadly overlap with the compositions of ultramafic units within the Rum Layered Complex, although subtle differences between each plug highlight their individuality. Interstitial base metal sulphide minerals occur in all ultramafic plugs on Rum. Sulphide minerals have magmatic δ34S (ranging from –1·3 to +2·1‰) and S/Se ratios (mean = 2299), and demonstrate that the conduit magmas were already S-saturated. However, two plugs in NW Rum contain substantially coarser (sometimes net-textured) sulphides with unusually light δ34S (–14·7 to +0·3‰) and elevated S/Se ratios (mean = 4457), not represented by the immediate host-rocks. Based on the Hebrides Basin sedimentary stratigraphy, it is likely that the volcanic con duits would have intruded through a package of Jurassic mudrocks with characteristically light δ34S (–33·8 to –14·7‰). We propose that a secondary crustal S contamination event took place at a level above that currently exposed, and that these sulphides sank back to their present position. Modelling suggests that upon the cessation of active magma transport, sulphide liquids could have sunk back through the conduit over a distance of several hundreds of metres, over a period of a few days. This sulphide ‘withdrawal’ process may be observed in other vertical or steeply inclined magma conduits globally; for example, in the macrodykes of East Greenland. Sulphide liquid sinking within a non-active conduit or during magma ‘suck-back’ may help to explain crustal S-isotopic compositions in magma conduits that appear to lack appropriate lithologies to support this contamination, either locally or deeper in the system.Sulphur isotope analyses were funded by NERC Isotope Geosciences Facilities grant, IP-1356-1112. H.S.R.H. acknowledges the financial support of the Natural Environment Research Council (NERC) for her PhD studentship (NE/J50029X) and funding of open access publication. This is a contribution to the TeaSe (Te and Se Cycling and Supply) research consortium supported by NERC award NE/M011615/1 to Cardiff University and the University of Leicester

    Distinct sulfur saturation histories within the Palaeogene Magilligan Sill, Northern Ireland: Implications for Ni-Cu-PGE mineralisation in the North Atlantic Igneous Province

    Get PDF
    This is the author accepted manuscript. The final version is available from NRC Research Press via the DOI in this record.The ~60 m thick Magilligan Sill is part of the British Palaeogene Igneous Province in the North Atlantic. The sill comprises layers of dolerite and olivine gabbro, and it intrudes a thick sequence of Mesozoic mudstones and marls, which are locally baked at the sill margins. Since 2014, the sill has been an exploration target for orthomagmatic Ni-Cu-PGE sulfide mineralisation analogous to the Noril’sk-Talnakh intrusion in Russia. We present new petrological, geochemical and S-isotope data to assess the prospectivity of the sill and the underlying magmatic plumbing system. Most sulfides in the dolerite portions of the sill are < 50 μm in size and comprise only pyrite with PGE abundances below detection limit. In the olivine gabbros, > 150 μm size pentlandite, chalcopyrite and pyrrhotite grains contain < 4 ppm total PGE, 1 460 ppm Co and 88 ppm Ag. Pyrite from the dolerites have δ34S ranging from -10.0 to +3.4 ‰ and olivine gabbro sulfides range from -2.5 to -1.1 ‰, suggesting widespread crustal contamination. The S/Se ratios of sulfides in the dolerites and olivine gabbros range from 3 500 to 19 500 and from 1 970 to 3 710, respectively, indicating that the latter may have come from upstream in the magma plumbing system. The Magilligan Sill records multiple injections of mafic magma into an inflating sill package, each with distinct mechanisms towards S-saturation. Whilst the sulfide minerals in the sill do not constitute significant mineralisation themselves, detailed in-situ studies highlight a divergence in Ssaturation histories, and suggest that a larger volume of olivine gabbro sulfides at depth may be prospective

    Contrasting mechanisms for crustal sulphur contamination of mafic magma: evidence from dyke and sill complexes from the British Palaeogene Igneous Province

    Get PDF
    This is the final version of the article. Available from the Geological Society via the DOI in this record.he addition of crustal sulphur to magma can trigger sulphide saturation, a process fundamental to the development of some Ni–Cu–PGE deposits. In the British Palaeogene Igneous Province, mafic and ultramafic magmas intrude a thick sedimentary sequence offering opportunities to elucidate mechanisms of magma–crust interaction in a setting with heterogeneous S isotope signatures. We present S-isotopic data from sills and dykes on the Isle of Skye. Sharp contrasts exist between variably light δ34S in Jurassic sedimentary sulphide (−35‰ to −10‰) and a local pristine magmatic δ34S signature of −2.3 ± 1.5‰. Flat-lying sills have restricted δ34S (−5‰ to 0‰) whereas steeply dipping dykes are more variable (−0‰ to −2‰). We suggest that the mechanism by which magma is intruded exerts a fundamental control on the degree of crustal contamination by volatile elements. Turbulent flow within narrow, steep magma conduits, discordant to sediments, and developed by brittle extension or dilation have maximum contamination potential. In contrast, sill-like conduits emplaced concordantly to sediments show little contamination by crustal S. The province is prospective for Ni–Cu–PGE mineralization analogous to the sill-hosted Noril’sk deposit, and Cu/Pd ratios of sills and dykes on Skye indicate that magmas had already reached S-saturation before reaching the present exposure level.Sulphur isotope analysis was undertaken at the Scottish Universities Environment Research Centre (SUERC) and funded by an NERC Isotope Geosciences Facilities Steering Committee grant (IP-1356-1112). H.S.R.H. would like to acknowledge the financial support of the Natural Environment Research Council (NERC) for funding this work (studentship NE/J50029X/1) and open access publication. A.J.B. is funded by NERC funding of the Isotope Community Support Facility at SUER

    Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit, Scotland

    Get PDF
    Significant tellurium enrichment occurs in many orogenic gold deposits but the factors causing this are little understood; some authors suggest this demands a magmatic input whereas others suggest it need not. Fractionation of Te from Se and S could offer insight into source/pathway processes of auriferous fluids. The metasedimentary-hosted Cononish vein gold deposit, Scotland, is unusually Te-rich compared to many orogenic gold deposits with Te/Au ≈ 2.4 whereas most orogenic deposits have Te/Au < 1. Here, Ag in Au-Ag alloy increases from ∼10 to 90 wt% through the paragenesis, correlating with decreasing hessite (Ag2Te) abundance. This suggests the Au-Ag alloy composition was controlled by the fluid Te activity, and that this decreased through time. This is coupled to an increase in pyrite δ34S from −2.0‰ to +11.4‰ through the paragenesis. Thus, the deposit formed from a primary fluid with a low-δ34S and high Te + Au + Ag that evolved to a high δ34S-low Te, Pb + Cu bearing fluid. The high δ34S of the later fluid suggests it can only be sourced from specific nearby metamorphosed SEDEX horizons. The early fluid that deposited most of the gold could be sourced from other metasedimentary units in the stratigraphy or be magmatic in origin. We argue that two observations taken together suggest it is most likely that this fluid was magmatic; the age of the mineralisation is identical to the last stage of crystallization of nearby granite batholiths, and the fluid has a S-isotope signature consistent with a magmatic source. Gold deposits in orogenic belts are almost certainly polygenetic and this study demonstrates evidence for Te-rich “orogenic” deposits having a significant magmatic component

    A comparison of magnetic resonance, X-ray and positron emission particle tracking measurements of a single jet of gas entering a bed of particles

    Get PDF
    Measurements of the lengths of a single jet of gas entering a packed bed were made using magnetic resonance imaging (MRI), positron emission particle tracking (PEPT) and X-ray radiography and the results compared. The experiments were performed using a Perspex bed (50 mm i.d.) of poppy seeds: air at 298 K was admitted to the base of the bed through a single, central orifice, 2 mm in diameter. Poppy seeds (Geldart Group B, measured minimum fluidisation velocity with air at 298 K and 1 atm of 0.13 m/s and particle density ~1060 kg/m3) were used because of their high content of oil, which contains mobile protons and hence is suitable for MRI examination. The lengths of jet measured using the three techniques were in agreement between 50 m/s < Uo < 100 m/s, where Uo is the superficial velocity through the orifice. Below Uo = 50 m/s, X-ray measurements of jet lengths were shorter than those measured using MRI. This was attributed to the minimum diameter of void, found to be 5 mm, detectable in a 50 mm bed using ultra-fast X-ray measurements. PEPT is most commonly used to calculate particle velocities, whilst jet lengths are usually calculated from determinations of voidage. However, the particle locations determined in this work by PEPT were used to calculate a fractional occupancy count, from which a jet length could be inferred.RCUK, OtherThis is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ces.2014.09.02

    Shallow marine serpentinization-derived fluid seepage in the Upper Cretaceous Qahlah Formation, United Arab Emirates

    Get PDF
    Serpentinization of ultramafic rocks in the sea and on land leads to the generation of alkaline fluids rich in molecular hydrogen (H2) and methane (CH4) that favour the formation of carbonate mineralization, such as veins in the sub-seafloor, seafloor carbonate chimneys and terrestrial hyperalkaline spring deposits. Examples of this type of seawater–rock interaction and the formation of serpentinization-derived carbonates in a shallow-marine environment are scarce, and almost entirely lacking in the geological record. Here we present evidence for serpentinization-induced fluid seepage in shallow-marine sedimentary rocks from the Upper Cretaceous (upper Campanian to lower Maastrichtian) Qahlah Formation at Jebel Huwayyah, United Arab Emirates. The research object is a metre-scale structure (the Jebel Huwayyah Mound) formed of calcite-cemented sand grains, which formed a positive seafloor feature. The Jebel Huwayyah Mound contains numerous vertically orientated fluid conduits containing two main phases of calcite cement. We use C and O stable isotopes and elemental composition to reconstruct the fluids from which these cements precipitated and infer that the fluids consisted of variable mixtures of seawater and fluids derived from serpentinization of the underlying Semail Ophiolite. Based on their negative δ13C values, hardgrounds in the same section as the Jebel Huwayyah Mound may also have had a similar origin. The Jebel Huwayyah Mound shows that serpentinization of the Semail Ophiolite by seawater occurred very soon after obduction and marine transgression, a process that continued through to the Miocene, and, with interaction of meteoric water, up to the present day
    • …
    corecore